
Recursive Functions
Sometimes when solving a problem, we can compute the solution of a simpler version of the
same problem. Eventually we reach the most basic version, for which the answer is known.
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Content Learning Objectives

After completing this activity, students should be able to:

• Identify the base case and recursive step of the factorial function.

• Trace a recursive function by hand to predict the number of calls.

• Write short recursive functions based on mathematical sequences.

Process Skill Goals

During the activity, students should make progress toward:

• Evaluating mathematical functions to gain insight on recursion. (Information Processing)
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Model 1 Factorial Function

”In mathematics, the factorial of a non-negative integer n, denoted by n!, is the product of all
positive integers less than or equal to n. For example, 5! = 5 × 4 × 3 × 2 × 1 = 120.”

Source: https://en.wikipedia.org/wiki/Factorial

n n!

0 1

1 1

2 2

3 6

4 24

5 120

Questions (15 min) Start time:

1. Consider how to calculate 4! = 24.

a) Write out all the numbers that need to be multiplied:

4! =

b) Rewrite the expression using 3! instead of 3 × 2 × 1:

4! =

2. Write expressions similar to #1b showing how each factorial can be calculated in terms of a
smaller factorial. Each answer should end with a factorial (!).

a) 2! =

b) 3! =

c) 100! =

d) n! =

3. What is the value of 0! based on Model 1? Does it make sense to define 0! in terms of a
simpler factorial? Why or why not?

https://en.wikipedia.org/wiki/Factorial


If we repeatedly break down a problem into smaller versions of itself, we eventually reach a basic
problem that can’t be broken down any further. Such a problem, like 0!, is referred to as the base case.

4. Consider the following Python function that takes n as a parameter and returns n!:

1 def factorial(n):

2 # base case

3 if n == 0:

4 return 1

5 # general case

6 product = 1

7 for i in range(n, 0, -1):

8 product *= i

9 return product

a) Review your answer to #2c that shows how to compute 100! using a smaller factorial.
Convert this expression to Python by using the function above instead of the ! operator.

b) Now rewrite your answer to #2d in Python using the variable n and the function above.

c) In the source code above, replace the “1” on Line 6 with your answer from b). Then cross
out Lines 7 and 8. Test the resulting function in a Python Shell. Does it still work?

d) What specific function is being called on Line 6?

e) Why is the if statement required on Line 3?

5. A function that refers to itself is called recursive. What two steps were necessary to define
the recursive version of factorial?

6. Was a loop necessary to cause the recursive version of factorial to run multiple times?
Explain your reasoning.



Model 2 Fibonacci Numbers

The Fibonacci numbers are a sequence where every number (after the first two) is the sum of
the two preceding numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

Source: https://en.wikipedia.org/wiki/Fibonacci_number

We can define a recursive function to compute Fibonacci numbers. Enter the following code
into a Python Editor, and run the program to see the sequence.

1 def fibonacci(n):

2 # base case

3 if n == 1 or n == 2:

4 return 1

5 # general case

6 return fibonacci(n - 1) + fibonacci(n - 2)

7

8 if __name__ == "__main__":

9 for i in range(1, 6):

10 print(fibonacci(i))

Questions (10 min) Start time:

7. Based on the source code:

a) How many function calls are needed to compute fibonacci(3)? Identify the value of the
parameter n for each of these calls.

b) How many function calls are needed to compute fibonacci(4)? Identify the value of the
parameter n for each of these calls.

c) How many function calls are needed to compute fibonacci(5)? Identify the value of the
parameter n for each of these calls.

8. Check your answers for the previous question by adding the following print statements to
the code and rerunning the program:

• Insert print("n is", n) at Line 2, before the # base case comment

• Insert print("fib(%d) is..." % i) at Line 10, before the print statement

https://en.wikipedia.org/wiki/Fibonacci_number


9. What happens if you try to compute fibonacci(0) in the Python Shell?

10. How could you modify the code so that this situation doesn’t happen?

Model 3 Summation

”In mathematics, summation (capital Greek sigma symbol: Σ) is the addition of a sequence of
numbers; the result is their sum or total.”

100

∑
i=1

i = 1 + 2 + 3 + . . . + 100 = 5050

Source: https://en.wikipedia.org/wiki/Summation

Questions (20 min) Start time:

11. Consider how to calculate
4
∑

i=1
i = 10.

a) Write out all the numbers that need to be added:
4
∑

i=1
i =

b) Show how this sum can be calculated in terms of a smaller summation.
4
∑

i=1
i =

12. Write an expression similar to #11b showing how any summation of n integers can be
calculated in terms of a smaller summation.

n
∑

i=1
i =

13. What is the base case of the summation? (Write the complete formula, not just the value.)

https://en.wikipedia.org/wiki/Summation


Here are important questions to consider before writing a recursive function:

• How can you define the problem in terms of a smaller similar problem?

• What is the base case, where you solve an easy problem in one step?

• For the recursive call, how will you make the problem size smaller?

To avoid infinite recursion, make sure that each recursive call brings you closer to the base case!

14. Implement a recursive function named summation that takes a parameter n and returns the
sum 1+ 2+ . . .+ n. It should only have an if statement and two return statements (no loops).

15. Enter your code into a Python Editor, and test the function. Make sure that summation(100)

correctly returns 5050.

16. Implement a recursive function named geometric that takes three parameters (a, r, and n)
and returns the sum “a + ar + ar2 + ar3 . . .” where n + 1 is the total number of terms.

a) What is the base case?
geometric(a, r, 0) returns:

b) What is the recursive case?
geometric(a, r, n) returns:

c) Write the function in Python:

17. Enter your code into a Python Editor, and test the function. For example, if a = 10 and r = 3,
the first five terms would be 10, 30, 90, 270, and 810. Make sure that geometric(10, 3, 4)

correctly returns 1210 (the sum of those five terms).
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